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ABSTRACT

Localization of Drosophila embryos in images is a fundamen-
tal step in an automatic computational system for the explo-
ration of gene-gene interaction on Drosophila. In this paper,
we introduce a localization framework based on the analysis
of connected components in the Gaussian scale space of an
embryonic image. We propose three criteria for the selection
of the optimal scale. The experiment results show the promise
of the proposed methods.

Index Terms— Localization, connected component,
scale selection.

1. INTRODUCTION

Drosophila embryonic images provides detailed spatial and
temporal information of gene expression, which become an
important tools for micro-biologist to study gene-gene inter-
action [1]. High throughput drosophila embryonic images
arises the need of automatic system of analyzing gene-gene
interaction patterns. As well as many other micro-biology
imaging circumstance, a Drosophila embryonic image con-
tain a Region of Interest (ROI), i.e., the targeting embryo in
imaging. Such embryonic images usually contain significant
amount of variations: i) imaging conditions, such as the con-
trast, scale, orientation, and neighboring embryos, ii) gene
expression patterns, and iii) developmental stages.

Localization of the ROI in Drosophila embryonic images
is a fundamental step in an automatic computational system
for the exploration of gene-gene interaction on Drosophila.
Due to serious image variations in embryonic images, it has
been observed that the straight application of existing tech-
niques on edge detection and contour extraction failed to ob-
tain desirable results [9, 8, 5]. Several approaches have been
proposed to extract the ROI from embryonic images [4, 9,
8]. Peng et al. [9] proposed an approach that computes the
standard deviation of the local windows of pixels to charac-
terize pixels as foreground and background pixels, and ap-
plies 8-neighbor-connectivity region-growing method to lo-
calize the contour of the embryo. Pan et al. [8] used a vari-
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Fig. 1. Connected components of an embryonic image in a
Gaussian scale space.

ant of Marquardt-Levenberg algorithm to compute an optimal
affine transformation to register localized embryos into an el-
lipsoidal region. Frise et al. [3] proposed a heuristic algorithm
to separate the embryo of interest from multiple touching em-
bryos, with the assumption that the center of the embryo of
interest is the image center. Mace et al. [7] proposed an eign-
embryo method to extract the contour of embryos, where par-
ticle swarm optimizer was used to reduce the computational
cost of searching optimal eigen parameters. Puniyani et al.
[10] proposed an edge detection based method that involves
a set of heuristic constraints, including object size, convexity,
shape features (e.g., ratio of the major over minor axis of an
object), and the percentage of overlapping region. Li et al.
[5] proposed a framework that consists of active contour and
eigen-shape methods.

In this paper, we introduce a framework for the localiza-
tion of the ROI of an embryonic image based on connected
components in the Gaussian scale space. The scale space
theory used in this paper is contributed by Lindeberg [6]. The
rationale of the proposed framework is illustrated in Fig. 1
that shows connected components of an embryonic image in
a subsampled scale space with scale σ ranging from 1 to 200.



We can observe that some scales in the middle (say, σ=25
or 37) achieve a good balance between the completeness of
the ROI (the central embryo) and separability of the ROI
from non-ROIs (i.e., neighboring partial embryos). However,
Fig. 1 also shows the complexity of image structures of em-
bryonic images in scale space. Note that there is no obvious
superset/subset relationship among connected components in
different scales.

We will propose three criteria to select a good scale for the
embryo localization: i) minimization of the number of con-
nected components, ii) maximization of the area of the largest
connected component, and iii) minimization of the displace-
ment of the contour of the largest connected components to a
pre-defined shape model (e.g., ellipse). The proposed criteria
are application oriented and thus different from the general
principle of automatic scale selection proposed by Lindeberg
[6], such as: “A powerful approach to perform local and adap-
tive scale selection is by detecting local extrema over scales
of normalized differential entities.” [6]. In experiment, we
give a comparison of three proposed criteria. We also com-
pare the proposed framework with previous works, and obtain
a higher localization accuracy.

2. CRITERIA FOR SCALE SELECTION

Denote Iσ = I ∗Gσ(x, y) the convolution of an image I and
the 2d Gaussian filter with scale σ. Denote EIσ a binary im-
age of Iσ . Assume thatEIσ consists of a number of connected
components, that is

EIσ =
⋃
i

Ci,σ, Ci,σ
⋂
Cj,σ = ∅, i 6= j,

where {Ci,σ} is a set of connected components (in terms of
8-connectivity) in scale σ, and ∅ indicates an empty set. Fur-
thermore, we denote Ciσ,σ the largest connected component
in the binary image EIσ , i.e.,

iσ = argmaxi|Ci,σ|,

where |C| represents the area of a connected component C.
In the following, we propose three criteria for the selec-

tion of the optimal scale to localize the ROI in an embryonic
image.

Criterion 1: Minimization of the number of connected
components

As illustrated in Fig. 1, an embryonic image tends to be
over-segmented if scales are relatively small. As the scale in-
creases, the number of connected components decreases to a
stable number. Based on this observation, we propose a crite-
rion that aims to minimize the number of connected compo-
nents, i.e.,

σ∗ = argminσ|{Ci,σ}|, (1)

where |{Ci,σ}| indicates the number of connected compo-
nents. Moreover, if there are multiple scales leading to the
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Fig. 2. Largest connected components: a) without, b) with
smoothness constraint.

minimum number of connected components, the smallest
scale will be selected.

Criterion 2: Maximization of the largest connected com-
ponents

A different strategy to select the optimal scale is to fo-
cus on analyzing largest connected components across scales.
Our second criterion is to maximize the area of the largest
connected component, i.e.,

σ∗ = argmaxσ|Ciσ,σ| (2)

Furthermore, we add a smoothness constraint on the bound-
ary of the largest connected component Ciσ,σ . Denote c =
{p0, p1, . . . , pn, p0} the boundary of a connected component
Ciσ,σ , and ai = cos−1〈 pi+1−pi

‖pi+1−pi‖ ,
pi−1−pi
‖pi−1−pi‖ 〉 the cross angle

of point pi. A connected component Ciσ,σ is said to satisfy
the smoothness constraint if max ai ≥ 135◦.

Fig. 2 shows a comparison of the Criterion 2 without and
with the smoothness constraint. Without the smoothness con-
straint, the jaggy boundary of the largest connected compo-
nent extracted by Criterion 2 shows the “over-detailed” con-
nected component, which in turn indicates that Criterion 2
selects a relatively small scale as the optimal scale. With
smoothness constraint, the largest connected component ex-
tracted by Criterion 2 is consistent with the real boundary.

Criterion 3: Minimization of shape inconsistency
Ellipse is a shape model that has been used to model

the boundary of Drosophila embryos [8]. Our third criterion
aims to maximize the fitness of the boundary of the largest
connected component to the ellipse model, equivalently, to
minimize the their inconsistency. Specifically, we will use a
quadratic equation to model the shape of an embryo, for the
convenience of numerical computation, as follows:

S(p) = ax2 + by2 + cxy + dx+ ey + f = 0,

where p = (x, y) is a point, and a, b, . . . , f are 6 parameters.
Given a point set P (the boundary of a connected compo-
nent), a, b, . . . , f can be estimated by linear fitting via eigen-
decomposition [2].

The inconsistency (or offset) between P and its estimated
shape S, denoted as d(P, S), measures how well the point set
P is consistent with a shape of ellipse. Under the assump-
tion of a single ROI (targeting embryo), our focus is on the



measurement of the inconsistency between the largest con-
nected component and its estimated shape, i.e., d(Ciσ,σ, S).
(For simplicity, Ciσ,σ denotes the boundary of a connected
component.) Formally, our third criterion aims to minimize
above-mentioned inconsistency as follows:

σ∗ = argminσd(Ciσ,σ, S) (3)

Fundamentally, the inconsistency between two different
point sets P and S is decided by the statistics of point-to-set
distances, e.g., {d(p, S)}p∈P . There can be different interpre-
tation of these statistics towards the inconsistency measure-
ment of two point sets, including mean, median, worst case,
etc. In this study, the inconsistency between the largest con-
nected component and its estimated shape is defined by the
worst case of point-to-set statistics, i.e.,

d(Ciσ,σ, S) = max
p
{d(p, S)}p∈Ciσ,σ .

Recall that the ellipse is a rough model of drosophila em-
bryos, and therefore the general statistics such as mean or me-
dian may not be the most appropriate choice. The rationale of
the worst case based distance lies in the observation of scale-
space behaviors: With the increment of the scale σ, neighbor-
ing objects tend to “diffuse/merge” into the ROI. This brings
an “expanded” connected component that contains not only
the ROI but also non-ROI objects.

3. EXPERIMENTS AND CONCLUSIONS

We will test the proposed framework on BDGP (Berkley
Drosophila Genome Project) [1]. BDGP images were cap-
tured using high throughput in situ protocol [1] for the deter-
mination of gene expression patterns of Drosophila embryos
during different developmental stages. Each image is a high-
resolution spatial representation of an embryo that might
be neighbored by some other embryos. BDGP images are
available at a public webpage 1.

We first give an experimental analysis of three proposed
criteria along with the localization framework on the BDGP
embryonic images. We then present a set of successful re-
sults achieved by the best criterion, and an estimation of the
localization accuracy. To have a quantified evaluation of the
proposed method, we define a successful localization if the
overlapping region between the algorithmically extracted ROI
and manually extracted ROI (i.e., the groundtruth) is less than
95%. We will also present an analysis of a failure case to
illustrate the limitation of the proposed framework.

The scale σ in our experiment ranges 1 to 200 in a sam-
pled space, which is, [1, 13, 25, 38, 50, 75, 100, 150, 200].
Sampled scale space is used to reduce the computational cost.

1http://www.fruitfly.org/insituimages/insitu images/
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Fig. 3. Comparison of three criteria. Overall, Criterion 2
achieves better results than the other two.

3.1. Experimental analysis of three criteria

Fig. 3 presents the results of four embryonic images achieved
by the three criteria. From Fig. 3, we obtain two main ob-
servations. First, 1st-4th images contain no gene expressive
(blue) regions. Criterion 2 and 3 are comparable with each
other. 5th-8th images contain gene expressive (blue) regions.
Criterion 3 (ellipse oriented) localizes a sub-region (an ex-
pressive region) instead of the entire ROI. Second, Criterion
2 outperforms Criterion 3 that in turn outperforms Criterion 1.
The superiority of Criterion 2 over Criterion 3 implies that the
ellipse model seems not a very effective shape model in the
context of localization of ROIs in drosophila embryonic im-
ages. It is also a natural expectation that Criterion 2, without
any shape constraint has better potential to be applicable to
the localization of ROIs of other type (micro-scopic) images.

3.2. Experimental results

We tested the proposed method with Criterion 2 on a dataset
of 1000 BDGP images, and obtained the localization accu-
racy of 91% in terms of the successful localization defined
above. As a comparison, we tested connected components
(without scale space) on the dataset, and obtained the accu-



Fig. 4. Samples of successful localization.

Fig. 5. Samples of failedlocalization.

racy of 65%. We also test an active contour based localiza-
tion approach [5] using the same dataset, and obtain accuracy
86%, which demonstrate the improvement of the proposed
framework over existing work.

Fig. 4 and Fig. 5 present successful and failed localization
of the proposed method, respectively. In Fig. 5, the first one
is caused by the occurrence of various gene-expressive sub-
regions. The second one is caused by a touching neighboring
embryo. The third one is caused by the complexity of non-
touching neighboring embryos.

Fig. 6 shows an embryonic image that fails the proposed
criterion in our current implementation of scale space. We
check structures of connected components in scale space.
Recall that scale σ ranging from 1 to 200 non-continuously.
We analyze that the underlying reason for the failure may be
caused by insufficient quantification of the scale space. More
essentially, it is caused by the complex image structure that is
in turn caused by a number of gene expression regions.
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Fig. 6. Analysis of a failure case.
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