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ABSTRACT
Geotagged imagery, from satellite, aerial, and ground-level
cameras, provides a rich record of how the appearance of
scenes and objects differ across the globe. Modern web-
based mapping software makes it easy to see how differ-
ent places around the world look, both from satellite and
ground-level views. Unfortunately, interfaces for exploring
how the appearance of objects depend on geographic loca-
tion are quite limited. In this work, we focus on a partic-
ularly common object, the human face, and propose learn-
ing generative models that relate facial appearance and ge-
ographic location. We train these models using a novel
dataset of geotagged face imagery we constructed for this
task. We present qualitative and quantitative results that
demonstrate that these models capture meaningful trends
in appearance. We also describe a framework for construct-
ing a web-based visualization that captures the geospatial
distribution of human facial appearance.

CCS Concepts
•Information systems→Geographic information sys-
tems; •Computing methodologies→Appearance and
texture representations;

Keywords
Geotagged imagery, facial appearance modeling, web-based
mapping

1. INTRODUCTION
Understanding cultural and demographic trends and their

spatial distribution is increasingly essential for individuals,
corporations, and governments. Social scientists attempt
to discover such trends, but the vast scale of this prob-
lem means that traditional approaches, which often involve
manual data collection and scholarly dissemination, are in-
sufficient. With the advent of social media, it has become
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Figure 1: We use geotagged social media images to learn
how human facial appearance varies globally. This montage
shows representative images for different clusters of people.

quite easy to automatically collect sufficient data that re-
flects these trends. However, novel methods for interpreting
this data are still needed.

We develop location-dependent human appearance mod-
els and visualizations, based on geotagged social media im-
ages, that enable novice users to understand world popula-
tions. We propose approaches for modeling the distribution,
P (f |`), of facial appearance, f , for arbitrary geographic lo-
cations, `. Two main types of approaches we could consider
for learning the relationship between human appearance and
geographic location are discriminative and generative. Islam
et al. [1] use a discriminative approach by addressing the
face localization problem using a deep convolutional neural
network (CNN) to estimate the city in which a given facial
image was captured. This approach is appealing because it
lends itself toward straightforward quantitative evaluation,
however it does not directly support our goals of enabling
user-focused visualizations. Therefore we take a generative
approach; we construct models that allows us to estimate
an individual’s appearance for a given geographic location.
We further extend these models by conditioning on other at-
tributes, such as gender, age, and face shape. The resulting
models are used to support visualizations, web-based appli-
cations, and analytics.

The main contributions of this work are: 1) A massive new
dataset of geotagged face images, 2) a regression model that
uses location, and potentially other attributes, to predict the
facial appearance distribution for any location in the world,
and 3) mapping applications that allow novice and expert
users to explore our dataset and the learned models. We
hope this work will serve as a foundation for a more ambi-
tious platform for understanding human appearance.

http://dx.doi.org/10.1145/2996913.2996997


2. RELATED WORK

Geotagged Image Analysis.
Two common tasks in the area of geotagged image analysis

are geolocalization and image-driven mapping. Geolocaliza-
tion takes an input image and estimates where it was cap-
tured. Hays et al. [2] collected six million geotagged Flickr
images and use a nonparametric approach to predict the lo-
cation of a query image. Works since then have proposed
various approaches using multiple sources of geotagged im-
agery, including aerial, ground-level, and landcover [3, 4].

Image-driven mapping is the process of recognizing at-
tributes from imagery and then conveying the learned at-
tributes in the form of a map. Crandall et al. [5] explore
visual and textual characteristics of 35 million geotagged im-
ages from Flickr. Other works in this area include weather [6]
and scenicness [7] mapping. Most work has focused on scene-
level appearance attributes, while relatively little has ex-
plored object-level appearance attributes. Our work is an
important step in this direction.

Soft Biometrics.
Understanding human faces is a long-standing problem in

computer vision and a wide body of research has been done,
including detection, recognition, and pose estimation. Many
issues can arise when observing facial images, including un-
suitable lighting conditions and challenging camera angles.
Recent advances in CNNs have led to learned feature rep-
resentations that are both compact and maintain semantics
of identity, while being invariant to lighting and pose [8, 9].
Parkhi et al. [10] propose VGG Face, similar to [9], how-
ever they train on a large dataset of celebrity faces and use
the VGG architecture. We utilize VGG Face in our work
because the authors have publicly released their models.

Geo-Facial Image Analysis.
Geo-facial image analysis is similar to understanding soft

biometrics, with the primary difference being that it incor-
porates location as an observed variable. The GeoFaces
dataset [11] is the largest face dataset explicitly designed
to explore the relationship between location and facial ap-
pearance. Greenwell et al. [12] develop a pipeline to process
geotagged imagery from Flickr and map several detected at-
tributes. Our work differs in that we create maps of facial
appearance, not the distribution of facial attributes such as
age and gender. Islam et al. [13] provides a broad overview
of problems in geo-facial image analysis. Our work is sim-
ilar, however we introduce a larger dataset, use improved
low-level processing methods, and focus on learning gener-
ative models of human facial appearance. In contrast to
their use of appearance based features (e.g., PCA applied to
raw pixel intensities) for mapping, we use semantic features
related to identity.

3. THE WGT DATASET
We have curated a large dataset of geotagged face images,

referred to as the WhoGoesThere? (WGT) dataset. Our
data source is the Yahoo Flickr Creative Commons 100M
(YFCC100M) [14], which contains 100 million images, of
which 49 million are geotagged, and their associated meta-
data. The metadata consists of 34 attributes including the
date uploaded, user and machine tags.

3.1 Face Detection and Filtering
For each geotagged image, we detect a bounding box for

the face, extract the face patch, and align it using the de-
tected landmark points. Facial bounding boxes and their
landmark points are extracted using the method of Kazemi
et al. [15] which is known to have an extremely low false
positive rate. This process resulted in 2, 106, 468 geotagged
face patches, each containing 68 fiducial landmarks.

Once the fiducial landmarks have been detected for a face,
we extract four different face patches. We extract both wide
(256 × 256) and tight (153 × 153) crops of each face. We
then align each crop using a similarity transformation based
on reference eye centers and a perspective transformation,
conditioned on the detected gender to male and female ref-
erence models. Gender-specific alignment is done to capture
differences in male and female facial structure.

3.2 Feature Extraction
We extract three features for each of the face patches:

PCA (appearance), VGG Face [10] FC8 (identity), and sev-
eral additional attributes. We randomly sample 200, 000
faces from our dataset and learn a PCA basis using the sim-
ilarity aligned, tight cropped patches as input. The remain-
ing images are reserved for experiments and evaluation. In
our experiments, we find that 200, 000 is a sufficient num-
ber of training images to learn a basis that captures facial
appearance.

Identity features are extracted in a similar manner. We
use the VGG Face network and extract features from the
network’s FC8 layer which correspond to the semantic la-
bels. We find that these identity features are more invariant
to lighting and pose than the PCA appearance features.

To support our interest in a data-driven approach to learn-
ing demographics at a worldwide scale, we provide age and
gender estimates using the CNNs of Levi et al. [16] and
reverse geocodings. The WGT dataset, including the ex-
tracted face patches, appearance and identity image fea-
tures, detected fiducial points, and age/gender estimates are
available at: http://wgt.csr.uky.edu.

4. PREDICTING FACIAL APPEARANCE
The appearance of a face is dependent on many factors,

including the individual’s age, gender, face shape, and pose.
In addition to these proximate factors, appearance is also de-
pendent, albeit indirectly, on the geographic location where
the image was captured. We propose using regression to pre-
dict facial appearance from varying combinations of these
factors to better understand the relationship between facial
appearance and location. In this section, we focus on uni-
modal regression methods and minimize the L2 loss function
for all models. In Section 5 we consider multimodal models.

We propose models of how age, gender, facial shape, and
location affect the expected value of appearance given these
factors. Using an 80/20 training and testing dataset split,
we learn two models: a linear regression model and a ran-
dom forest (RF) model whose objective is predicting the top
2048 PCA coefficients for different subsets of predictor vari-
ables. Since each model minimizes the same L2 loss function,
we find that the RMSE for all models is close in the range
of [10.245, 10.328]. The location RF model has the lowest
RMSE and the age linear model has the highest.

Figure 2 shows faces generated from our models. The first
column shows a source patch we extracted features from and
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Figure 2: Results of learning models conditioned individ-
ually on age, gender, location, and face shape and then
conditioned on all four of these attributes. The predicted
components are then used to reconstruct the original image.

the remaining columns show reconstructions from our mod-
els. In the ideal case, each reconstruction would produce
the source patch. The second and third columns show re-
constructions from the top one and four PCA components,
highlighting illumination at various angles. The following
five columns show reconstructions for each RF model condi-
tioned on a single objective attribute and then all attributes.
The last column compares our RF model to our linear model.
These reconstructions show that shape is more informative
than age and gender alone, but by conditioning on all at-
tributes our RF model is able to reconstruct a plausible face
relative to the source patch.

5. MULTI-MODAL DISTRIBUTIONS
In locations with diverse populations, a conditional aver-

age face, or any individual exemplar image, is likely insuffi-
cient to accurately reflect the diversity of facial appearance.
To overcome this, we propose learning a conditional multi-
modal distribution. The key idea is to cluster faces in image
feature space, assign each face to a cluster, and then learn to
predict cluster membership of a given geographic location.
Once this model is trained, we input location and obtain a
distribution over the expected face types. We are essentially
fitting a mixture model, P (f |`) =

∑
P (f |c)P (c|`), where f

is a facial feature, c is a cluster, and ` is a location.

5.1 Clustering Faces
Our goal is to cluster faces into groups of similar facial

appearance. At one extreme, we could group all faces into
one cluster, which is essentially the approach used in the
previous section. This approach does not allow us to model
the multi-modal nature of human appearance. At the other
extreme, we could attempt to make each cluster only con-
tain images from a single individual. This approach would
make learning a conditional distribution difficult because
there would likely be few samples per label. Experimen-
tally, we found that clustering into k = 250 groups was
a good compromise. Initially, we also found that using ap-
pearance features (PCA) resulted in clusters mostly grouped
faces by pose and lighting conditions. We discovered that
clustering the identity features (VGG Face FC8) resulted in
more semantically meaningful clusters.

The identity features for each face patch are clustered us-
ing iterative k-means clustering on a subset of our dataset.

Figure 3: (left) An exemplar face for a given class, ci. (right)
The conditional distribution of that class for each location,
P (c = ci|location).

We use a stratified sampling approach to minimize the im-
pact of dataset bias (few images captured in Africa). We
discretize the world into a 10×10 grid and randomly sample
no more than 500 faces from each bin to form our stratified
training set.

The final step of the clustering process is to construct
an exemplar face. We select the 5, 000 faces nearest to their
cluster center for each cluster. We then compute the average
landmarks for the 5, 000 closest faces and preserve top 800
faces whose landmarks are nearest to the average landmarks
to ensure the face is mostly front-facing. We then take these
800 faces and apply Collection Flow [17] to structurally re-
fine the exemplar face. The resulting image is assigned as
the exemplar image for each individual cluster. A subset of
exemplar faces are shown in Figure 3.

5.2 Conditional Distribution of Clusters
With our faces now clustered in feature space, we use a

neural network to represent the distribution over cluster as-
signments. Our network takes geographic location and land-
cover class as input and outputs the conditional probability
of the cluster assignment. We found that including the land-
cover class improved the accuracy of our model significantly
and made training converge more reliably. The network is
feed-forward with three hidden layers, with 100, 100, and 50
nodes respectively. All activations are hyperbolic tangent
and L2 regularization (λ = 1e−5) is used. We train the net-
work using stochastic gradient descent (batch size = 10, 000)
with a cross-entropy loss function.

Our neural network outputs P (c|`), however by using Bayes
rule we can visualize P (`|c = ci). This distribution reflects
where you would be most likely to find a face belonging to
the given cluster center, ci, as shown in Figure 3. Specifi-
cally, for each map we sample from P (`|c = ci) for a partic-
ular cluster, ci, at a dense grid of geographic locations. The
darker the location on the map the more likely it is that a
face seen at that location will be from the cluster. These
maps highlight that our model has learned how different
ethnic groups are distributed around the world.

6. EVALUATION

6.1 Quantifying Appearance Diversity
In this section, we design a metric useful for quantifying

appearance diversity. Using the FC8 image identity features,
we quantitatively measure diversity of a population by their
fraction of variability. We begin by querying a set of high-
population countries scattered throughout the world. Since
Africa has a relatively sparse number of images, we select
several countries from Central Africa to compare diversity.
For each country, we compute the covariance of the identity



Figure 4: Quantifying appearance diversity using the frac-
tion of variability explained by the top k PCA components
of the FC8 identity features. For a given number of compo-
nents, larger values imply less diversity, because more of the
variability is explained by the top k components.

Figure 5: Multiscale visualization. Zooming in reveals finer
details about world populations.

features and apply SVD to the covariance matrix. The frac-

tion of variability is defined as: λn =
∑n

i=1 λi∑N
i=1 λi

, where λ are

the set of eigenvalues calculated by SVD, n is the number
of top eigenvalues considered significant, and N = |λ|. This
metric allows us to examine multivariate variability. In our
case, this implies that the more appearance diverse a region
is, the lower the fraction of variability will be. Conversely,
less diverse regions will have a higher fraction of variability.
Figure 4 shows the fraction of variability for the selected
countries. If we compare Taiwan with Germany using the
top 50 eigenvalues, their fractions of variability are 0.744
and 0.822, respectively. These values tell us that Germany
is 9.49% more appearance diverse relative to Taiwan when
considering 50 dimensions of diversity.

6.2 Interactive Visualizations
In this section, we describe a method for multiscale visual-

ization of human appearance. We begin by discretizing the
world into a set of spatial bins. To scale with the addition of
new images, we apply an on-line method by maintaining the
sufficient statistics of a Gaussian distribution for each bin.
We maintain the count of images in each bin, c, and the run-
ning sum of the images, Isum =

∑c
k Ik. These two values

allow us to generate the mean and covariance in an efficient
manner for any given bounding box, enabling us to visualize

the average facial distribution of any queried region.
Figure 5 shows a screenshot from the multiscale web ap-

plication. The top image is at a higher zoom level and the
bottom image is a lower zoom level showing finer-grained
appearance. The user is also able to toggle the age and
gender representation. We are actively developing new vi-
sualizations as our research in this area progresses.

7. CONCLUSIONS
Overall, we have curated a large-scale dataset of geo-

tagged faces and shown many ways that we can both qualita-
tively and quantitatively model worldwide appearance and
diversity. We have demonstrated a variety of visualizations
and shown several pragmatic applications of our work. Our
dataset and web-based visualizations are publicly released in
hopes that this work will serve as a multidisciplinary foun-
dation towards furthering our understanding of human ap-
pearance diversity.
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