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Abstract

Human appearance depends on many proximate fac-
tors, including age, gender, ethnicity, and personal style
choices. In this work, we model the relationship between
human appearance and geographic location, which can im-
pact these factors in complex ways. We propose GPS2Face,
a dual-component generative network architecture that en-
ables flexible facial generation with fine-grained control of
latent factors. We use facial landmarks as a guide to syn-
thesize likely faces for locations around the world. We train
our model on a large-scale dataset of geotagged faces and
evaluate our proposed model, both qualitatively and quan-
titatively, against previous work.

1. Introduction
Differences in human phenotypes, the amalgam of ob-

servable characteristics, are dependent on many factors.
These factors may be biological, such as gender, age, and
ethnicity, or more ephemeral, such as personal style and
mood. Together, the biological and ephemeral factors
both depend on geographic location, time of day, and cur-
rent/forecasted weather conditions. This dependence has
been demonstrated for make-up and facial hair choices [7],
the frequency of various facial expressions [25], and types
of clothing [14].

This motivates us to consider a model that explicitly cap-
tures geographic location and its relationship to human ap-
pearance. To build this model on a global scale, we propose
using a large dataset of geotagged images collected from a
popular photo sharing website. While the model we learn
will inherit the biases inherent in the underlying data source,
it is sufficiently diverse to enable us to highlight the capa-
bilities of our model and learn the latent structure present in
the data.

We propose a novel generative model, GPS2Face, that
captures the complex relationship between human appear-
ance and geographic location. We utilize adversarial au-
toencoders (AAEs) [31], which have shown great promise

Figure 1: We propose a generative model that incorporates
geospatial metadata, along with additional human-related
attributes, and allows for synthesis of people within a given
area. The color of the bounding box in the map corre-
sponds to randomly generated women from their respective
regions.

in providing a way to generate samples from complex distri-
butions, such as natural images of faces, by using a distribu-
tion from which it is easy to sample. The distribution of face
images is complex due to drastic differences in pose, illu-
mination, expression, and occlusion, especially when con-
sidering faces that are captured in unconstrained settings.
Capturing the complete relationship between an image and
other proximal factors, such as age, gender, and location,
enables us to sample faces from anywhere on Earth. A geo-
graphically conditioned generative model has many poten-
tial uses, including discovering emerging trends in facial ap-
pearance (which could be due to mass migration), providing
an interactive visualization for educational purposes, or the
natural evolution of style.

Our approach significantly improves upon previous
works that attempt to model the relationship between geo-
graphic location and facial appearance. Disciplines includ-
ing anthropology [15] and evolutionary biology [28] have
historically relied on manual methods of field research to
acquire human phenotype data. These datasets are often
small, expensive to collect, and prone to human bias. Our
work is novel in that it uses a significantly larger sample
size and relies less on human biases and predispositions. In
principle, this means it has the potential to overcome some
of the pitfalls of previous works if we are able to train our
model using a truly unbiased dataset.



There is a long tradition in using discriminative compu-
tational approaches to understand human phenotype from
imagery. This work has largely been conducted in the
surveillance and biometrics community [6]. While these
approaches are interesting and relatively easy to evaluate,
they are limited in that they do not provide a generative pro-
cess that makes it possible to understand what the model has
captured about the human phenotype distribution. Our pro-
posed model is generative and, when compared with pre-
vious data-driven approaches [4], produces more realistic
faces, enables a variety of facial manipulations, and pro-
vides an explicit method for sampling facial appearance for
different attribute settings. Furthermore, our model is fast
so it can be used to directly support other applications such
as interactive visualization, as shown in Figure 1.

Our work makes the following contributions: 1) Sig-
nificantly improved image quality compared to previous
geolocation-conditioned generative models of human facial
appearance, 2) a novel pose representation that enables con-
tinuous pose manipulation, compared to discrete poses used
in previous generative models of human facial appearance,
3) a factored latent variable model that makes it simple to
manipulate and constrain semantically meaningful facial at-
tributes, such as pose, age, and gender, and 4) an extensive
evaluation highlighting the capabilities of our model. Our
results are comparable with other recent generative models,
which were trained on hand-curated datasets, despite being
trained on unfiltered social media imagery.

2. Related Work
Soft Biometrics In the context of computer vision, soft
biometrics are roughly defined as observable characteris-
tics, such as facial geometry, eye color, and gait, that are
easy for humans to perceive without special equipment. In
some applications, it is desirable to estimate these charac-
teristics directly [8, 27] but these characteristics are often
used implicitly to recognize individuals [34, 37, 40]. A goal
for such approaches is often to achieve invariance to unim-
portant factors for the given application. For example, ide-
ally a model for predicting age of an individual will work
equally well regardless of their gender and eye color. Simi-
larly, when predicting the ethnicity of an individual the pose
and lighting conditions should not affect the result. While
achieving invariance is a useful goal for such discrimina-
tive tasks, it makes it difficult to visualize the relationship
between human appearance and the latent factors. In our
work, we use a generative model which makes visualizing
this relationship relatively easy.

Soft biometrics approaches have typically ignored the
geographic location at which a photograph was captured;
it is assumed that a model should be invariant to the geo-
graphic location. However, there have been attempts to es-
timate the race/ethnicity of an individual [16, 39], which is

correlated with geographic location. Such approaches dis-
cretize the space of ethnicity into a small number of disjoint
categories. For our purposes, this representation is problem-
atic because it oversimplifies a complex attribute and would
therefore limit the expressiveness of our generative model.
In our work we do not explicitly define ethnicity nor limit it
to a fixed number of categories. Rather, we learn about the
relationship between appearance and geographic location,
which implicitly includes a variety of factors, ranging from
ethnicity to local fashionability.

Facial Synthesis The goal of facial synthesis is to gener-
ate realistic looking faces based on an easy-to-specify, typ-
ically low dimensional, representation. Early work on this
task proposed subspace models [43] and models that explic-
itly represented face pose [5]. More recent work has built
upon the Generative Adversarial Network (GAN) frame-
work proposed by Goodfellow et al. [10]. In this frame-
work, two networks are trained: a discriminator and a gen-
erator. In the context of image inputs, the discriminator’s
goal is to distinguish between real and synthesized images.
The generator’s goal is to synthesize images that fool the
discriminator into believing they are real. The networks are
trained adversarially where each is attempting to defeat the
other, ideally achieving an equilibrium condition in which
the generator synthesizes realistic images. Through this
process, the generator learns to map random samples from a
low-dimensional, known prior distribution into realistic im-
ages. One architecture in particular, DCGAN [35], has been
applied to a wide variety of image synthesis tasks, including
facial synthesis. Recently, many approaches [2, 13, 3] have
been proposed to simultaneously increase the stability and
output resolutions of GANs. The stability of GAN training
is an active area of research and some recent works have
provided general techniques [1, 36] for doing such.

Our goal is to be able to generate faces based on a va-
riety of latent factors. Unfortunately, in the basic formula-
tion, GANs do not allow for explicit control of the output,
thereby limiting their usefulness. A variant, called condi-
tional GANs [32], offers a solution. This is done by in-
cluding categorical or numeric metadata as an input to the
generator, in addition to the random sample from the prior.
There are many ways [26, 33] to incorporate this metadata
and to train conditional GANs.

A key requirement of many facial synthesis tasks is that
the identity of the synthesized image appears similar to the
input image. One example of this is the attribute transfer
task, where the goal might be to change a person’s hair color
or expression. An approach that made Brad Pitt look like
Donald Trump wouldn’t be of much use. Recently, several
methods have been proposed for transferring fine-grained
attributes such as age [23, 47] or transient attributes, such
as facial hair and hair color [29, 45]. Another task in which



identity preservation is imperative is facial frontalization.
Given a face that is captured at an extreme pose, the task is
to normalize the pose. Some recent approaches have used
facial symmetry as a way to synthesize the missing part,
while most recently others have used GANs [17, 46].

Similar to our model is the recent work by Tran et
al. [42]. However, their focus is on discriminative as op-
posed to generative tasks which leads to different model de-
sign choices. For example, they choose to represent face
pose as a single variable by discretizing only yaw. Our
model uses continuous pitch, yaw, and roll angles instead,
enabling finer-grained control of the synthesized images.
Additionally, their model disentangles factors of variation
by using a fixed set of identities in their discriminator. Our
proposed method uses geographic location and operates
at a worldwide scale, so relying on a fixed set of identi-
ties would be intractable. Instead, our model learns a soft
identity representation conditioned on the contextual factors
of age, gender, facial morphology, and location. We use
a generative architecture similar to [47], however we use
LeakyReLU instead of ReLU activations in all networks,
replace the transpose convolution layers with PixelShuf-
fle [38] convolution layers, and add an additional compo-
nent to emphasize facial morphology and pose. We found
that these design changes were necessary and result in a
network that is noticeably more stable during training, con-
verges to similar quality images in a fraction of the time,
and allows for increased control of factors of variation.

Geospatial Analysis of Facial Appearance Work in this
area has sought to use large datasets of geotagged face im-
ages to better understand human facial appearance. Islam et
al. [18] provides a broad overview of tasks and challenges
in the geospatial analysis of facial appearance, which they
called geofacial analysis. Work in this area, which can be
seen as a sub-domain of soft biometrics, has typically taken
a discriminative approach but usually focuses on attribute
prediction [11] rather than other common facial tasks such
as recognition. Islam et al. [19] used image features ex-
tracted from a pre-trained CNN to predict in which of 50
cities a face image was captured. Wang et al. [44] used ego-
centric geotagged videos with scene related characteristics,
such as weather, to learn facial attributes. Most early work
in geofacial analysis has focused on discriminative tasks. In
a notable exception, Bessinger et al. [4] proposed a method
for location-based face synthesis using a simple subspace
representation. However, this approach generates images
that lack realistic details, is unable to represent multiple
modes of appearance in regions with diverse populations,
and provides significantly less control over the synthesized
images than our approach. Our work is the first to propose
modeling the relationship between geographic location and
appearance using a generative-adversarial approach.

Figure 2: Samples from the WGT dataset [4] used in our
work. Unlike face datasets that have been previously used
to train generative models, such as CelebA [30], our dataset
has not been manually filtered and contains a wide variety
of image qualities.

3. Approach
We propose GPS2Face, a framework that is capable of

representing the relationship between latent factors of hu-
man appearance and geographic location and allows for
conditioned facial image generation. Our neural network
consists of two primary components: one that predicts facial
landmarks and a second that generates facial appearance.
We train GPS2Face on a large-scale dataset of geotagged
social media images of faces. Figure 2 shows samples from
the dataset. A diagram of our network architecture is shown
in Figure 3.

3.1. Dataset

Since our model is a data-driven approach to understand
how human appearance varies around the world, we need
data that can appropriately model the problem in scale,
distribution, and appearance diversity. We use the Who-
GoesThere? (WGT) dataset [4] for all experiments. Un-
like other recently created large-scale face datasets, such as
CelebA [30] and MegaFace [22], the WGT dataset includes
the geolocation data we need to train our model. CelebA is
commonly used to evaluate the performance of generative
models, however it is of higher image quality and captured
under more controlled settings (good lighting, solid back-
grounds) than the raw, social media imagery found in the
WGT dataset. Similarly to MegaFace, the WGT dataset is
a subset of the Yahoo Flickr Creative Commons 100 mil-
lion (YFCC100m) image dataset [41], however it only in-
cludes faces from images that are geotagged. In total, it
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Figure 3: Our proposed model, GPS2Face, has two components: a landmark prediction network, L, and an appearance
generation network supported by the other sub-networks. Landmarks are used to guide synthesis and improve the quality of
generated faces since identity is not used as a regularizer. L uses latent factors, c, to predict facial landmarks, s. Predicting
landmarks allows us to model how facial structure changes with respect to latent factors and also serves to avoid manually
specifying a large set of landmarks at test time.

contains 2.1 million geotagged face images, along with au-
tomatically estimated facial landmark locations [21] and
age/gender [27]. We augment this dataset by estimating the
pitch, yaw, and roll of each face using the provided land-
marks and the perspective-n-point algorithm.

3.2. Landmark Regression

The shape of one’s facial features are dependent upon
many biological factors, including age, gender, and ethnic-
ity. For example, the roundness of a child’s face is due to the
lack of age-induced bone development. On average, adult
men and women tend to have slightly different facial shapes.
These shape differences are subtle, however we are attuned
to both recognizing and differentiating them when observ-
ing the appearance of other people. Therefore, to capture
the conditional dependency of face shape on these biologi-
cal factors, we leverage the large quantity of images in our
dataset to regress facial landmarks using a neural network,
L. The input to L is latent factors, c, consisting of age,
gender, and location. The output is the predicted shape of
the face, s. The landmark regression network is trained by

minimizing the Huber loss [9]:

Lhuber(x, y) =
1

n

∑
i

zi

zi =

{
0.5(xi − yi)2, if |xi − yi| < 1

|xi − yi| − 0.5, otherwise
,

(1)

where x and y are vectors of target and predicted landmarks.
We choose this loss over L2 for improved training stability.

We then use the predicted landmarks to guide our gen-
erative model on where to draw specific facial parts. We
use the landmark locations generated by this network as in-
put to an appearance generation network. By using face
landmarks as inputs, we guide the appearance generation
network to synthesize particular facial features, such as the
eyes, mouth, and chin.

3.3. Generating Facial Appearance

Given the facial landmark locations, the next component
in our network renders the image. The appearance gener-
ation component of GPS2Face is composed of four sub-
networks: an encoder, a decoder, and discriminators for



both images and latent space. The encoder, E, takes as in-
put a face patch, x, to produce a latent vector, z. This latent
vector is used as input to a decoder/generator,G, to produce
a synthetic image. The first discriminator,Dx, is for images
and its purpose is to force the generator to produce realistic
facial images. The second discriminator, Dz , is for the la-
tent space, z. The goal of Dz is to force the encoder to map
z to look like a sample drawn from the prior distribution, pz .
This constraint on z allows us to readily generate samples
from pz that are distributed in the same way as our training
dataset. Our prior distribution is assumed to be uniform,
U(−1, 1). Details of the network architecture are provided
in the supplemental materials.

We denote x to represent an image, y are the set of latent
factors, c, and landmarks s, associated with the image, z is a
low-dimensional sample drawn from the prior distribution,
and λ∗ are parameters controlling the weight of the losses.
Each iteration of our procedure for optimizing GPS2Face
consists of four phases. In the first phase we only optimize
the parameters of the image discriminator, Dx, using a true
image, x, and a fake image G(z):

L1 = λ1 · Ex∼pdata(x)

[
log Dx(x,y)

]
+

λ1 · Ez∼pz(z)

[
log (1−Dx(G(z,y),y)

]
.

This loss encourages the image discriminator to tell the dif-
ference between real and fake images. In the second phase,
we optimize for the latent space discriminator, Dz:

L2 = λ2 · Ez∼pz(z)

[
log Dz(z)

]
+

λ2 · Ex∼pdata(x)

[
log (1−Dz(E(x)))

]
.

This ensures that samples encoded by the generator appear
like they are from the prior distribution so we can effectively
sample. In the third phase, we optimize for the reconstruc-
tion error between a real image and a generated image:

L3 = λ3 · Ex∼pdata(x)

[
||x−G(E(x),y)||1

]
.

Minimizing the reconstruction error makes sure that the col-
ors of pixels in our generated image appear similar to the
encoded image. The reconstruction loss of autoencoders is
often the L2 loss, however we choose to minimize the L1

loss based on results from various works [20] showing that
generated images using L1 loss are less blurry and more re-
alistic than their L2 loss counterparts. In the fourth phase
we update G and E with the adversarial penalty:

L4 = λ4 · Ex∼pdata(x)

[
log G(E(x),y)

]
.

We use the following conditioning variables in our net-
work: age, gender, latitude/longitude location, country
code, pose, and landmarks. We found that the number of
conditioning terms and their dimensionality made training
the model difficult. Additionally, it was important to weigh

the discriminator updates to avoid large spikes in gradient
and preserve model stability. λ1, λ2, and λ4 are each set
to 0.01 and λ3 is set to 1.0 empirically. All discrete vari-
ables (age, gender, and country code) are represented in a
one-hot encoding. Pose is represented as Euler angles in
degrees, and landmarks are represented by 68 keypoints in
Multi-PIE [12] format.

4. Evaluation
We qualitatively and quantitatively evaluated GPS2Face

using a large dataset of facial images captured in the wild
by many different photographers.

4.1. Implementation Details

We randomly split the WGT dataset into training (80%),
testing (10%), and held-out (10%) sets, stratifying by coun-
try to ensure representation for each country in all sets. To
reduce the bias toward more populous countries, we sam-
pled 50 000 faces, with replacement, from each country to
form our final training set. We trained GPS2Face using
Adam [24] for 100 000 minibatches using a learning rate
of 0.0001 (β1 = 0.5, β2 = 0.999). Each minibatch con-
tained 64 face patches that were resized to 128 × 128 and
whose intensity values were scaled to the range [-1.0, 1.0].
We implemented our neural network models in PyTorch.

4.2. Attribute Manipulation

We highlight the effectiveness of our model by trans-
forming images using various combinations of latent fac-
tors. We show several different applications of our archi-
tecture including identity-preserving pose deformations and
changes in other latent factors. In Figure 4, we manipulate
faces from the testing set in a variety of ways. Figure 4a
shows a montage of example images, organized by pitch
(y-axis) and yaw (x-axis). Figure 4b shows the reconstruc-
tion of the example images using our model. Each image
was encoded and reconstructed using GPS2Face with the
ground-truth latent factors. These images lose some details,
such as the microphone in the upper left image, but show
that our model can represent a diverse set of faces while
preserving important characteristics.

Figure 4c shows how we can manipulate the latent vari-
ables to achieve different effects. In this montage, we
changed the gender to be all female, constrained age to be
in the range 25–32, and frontalized pose (setting pitch and
yaw to 0◦). Finally, as a test of our ability to encode for ge-
olocation, we change the latitude/longitude location of each
row to be the locations of capitol cities from the following
countries (from top to bottom): United Kingdom, Germany,
Italy, India, Taiwan, Ethiopia, Iran, and Sudan. Focusing on
the fifth row of each montage, we observe several impor-
tant aspects. Females in this row, samples 1, 2, and 5, do
not have their gender changed and their respective hairstyle



(a) (b)

(c) (d)

Figure 4: Examples of encoding an input set of images (a) in randomly selected to have certain poses, and transforming them
by manipulating the latent factors. (b) shows the reconstruction using ground truth labels. (c) shows changing the latent
factors used to generate (a) into females, ages 25–32, frontalized, and each row is fixed to the following set of countries:
United Kingdom, Germany, Italy, India, Taiwan, Ethiopia, Iran, Sudan. (d) shows changing the latent factors to be males,
ages 38–43, pitch = -35◦, yaw = 45◦, and each row fixed to the same countries as used in (c).



(a) Input images (b) Ours (encoded) (c) Ours (identity) (d) Bessinger et al. [4]

Figure 5: Qualitative comparison of random samples from our method and a previous method from Bessinger et al. [4]. Input
images (a) are encoded through our network to predict z, which is used as input to our generator to decode (b). Using the
same conditioning terms, in (c) we change z to be a sample from the prior. (d) is generated using [4].

shapes and lighting are preserved. In addition, males in this
row, samples 3, 5, and 8, have lost their facial hair and ap-
pear more feminine. These results highlight that GPS2Face
can represent many complex aspects of appearance and its
relationship to latent factors, including geographic location.

4.3. Qualitative Comparison with Previous Work

We qualitatively compare the results of GPS2Face
against the previous work of Bessinger et al. [4]. In their
work, the authors propose using latent factors to predict the
PCA components and then use those predicted components
to generate a face. Note that their method does not allow
for a principled approach to sampling faces, whereas our
method forces the latent space to obey a prior distribution
with a known probability density function.

In Figure 5 we provide a qualitative comparison of this
method versus ours using faces and attributes from the held-
out set. Figure 5a shows real images that will be encoded
and whose latent factors are used to condition each model.
Figure 5b shows faces generated with our method after en-
coding input images to the latent space, then reconstruct-
ing using the conditional encoded sample. Figure 5c shows
faces generated with our method using conditioned sam-
ples from the prior. Figure 5d shows reconstructions from
the predicted PCA coefficients. The reconstructions in Fig-
ure 5d are lower-quality samples than ones we have gener-
ated due to a significant amount of artifacts and color repro-
duction. We quantify these claims in Section 4.4.

In Figure 6 we evaluate the effect of geographic location
on facial appearance. We draw a single z from our prior, the
uniform distribution, U(−1, 1), and leave it fixed for each
montage. We also fix age and gender to be a 25 year old
female. We then vary facial pose pitch ± 30◦ and yaw ±
20◦, left to right, and vary the country in each montage. The
effects of changing the country are noticeable, yet subtle, as
both skin tone and facial morphology changes with location.

Table 1: Quantitative evaluation of our proposed method.

Inception
Score PSNR SSIM

Bessinger et al. [4] 1.475 ± 0.004 13.068 0.339

Ours (encoded) 1.7370 ± 0.007 19.131 0.513

Ours (identity) 1.609 ± 0.004 – –

Real data 3.483 ± 0.015 – –

The most representative faces are those with neutral pose (in
the center of each montage).

Figure 7 shows montages of synthesized faces from vari-
ous locations around the world. For each montage, we draw
25 values of z from the prior. We select a configuration
of latent factors where age and gender are randomized, and
pose is frontal. In total, we show 25 faces in each country
for three different countries.

4.4. Quantitative Evaluation

We quantitatively evaluate our method using several met-
rics that have been used to measure performance in many
recent works of generative models. The first of these is
the inception score proposed by Salimans et al. [36], which
measures how similar a generated sample is to its predicted
class and according to the authors correlates well with hu-
man judgment. In image-to-image translation works, two
other fidelity metrics are also measured: the peak signal-to-
noise ratio (PSNR) and structured similarity metric (SSIM).
PSNR will assess how much noise is present in the gener-
ated samples, relative to the real data. SSIM compares two
images and produces is a value ranging from [0, 1], where 1
is the result of comparing the structure of an image with it-
self. Since changing the identity of a person changes makes
the task no longer an image-to-image translation, we do not



(a) Japan (b) United Kingdom (c) DR Congo

Figure 6: We observe that for a fixed sample, z, we can vary pose and preserve individual identity. We fix the age and gender
to be a 25 year old female. We vary the pose to be ± 20◦ yaw and ± 30◦ pitch. We then sample locations from the countries
shown in the captions above.

(a) United Kingdom (b) Russia (c) Philippines

Figure 7: We highlight appearance diversity within each country by generating faces sampled from the prior. In each montage,
age and gender are randomized, while pose and geographic location are fixed.

compute PSNR and SSIM on identity-modified images.
Our results are shown in Table 1. For inception score, the

objective is to attain a score that is as high as the distribution
of the real data allows. Not only does our encoded image
model outperform [4], but our identity-manipulated model
does as well. This metric implies that the faces our model
can generate, from both autoencoded samples and random
samples from the prior, are more realistic and diverse than
samples generated in previous work.

5. Conclusions

Advances in mapping technology have made it possible
to quickly see what a street corner looks like in most major
cities of the world. In this work, we presented GPS2Face,

which is a first step towards making it possible to see what
people might look like on those street corners. We demon-
strated that GPS2Face can learn the complex relationship
between geographic location and various facial attributes
despite the noisy nature of our dataset. The resulting model
is fast to sample from at test time, enables fine-grained con-
trol over facial appearance, and generates realistic looking,
and novel faces.
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